1 | |
∑n=0∞yn+1z−n−1+∑n=0∞ynz−n = ∑n=0∞n2z−n | |
z |
d | d | 1 | ||||||||||||
(∑n=0∞z−n) = | ( | ) | ||||||||||||
dz | dz |
|
d | d | z | |||
(∑n=0∞z−n) = | ( | ) | |||
dz | dz | z−1 |
1*(z−1)−z*1 | ||
∑n=0∞(−n)z−n−1 = | ||
(z−1)2 |
−1 | ||
−∑n=0∞nz−n−1 = | ||
(z−1)2 |
z | ||
∑n=0∞nz−n = | ||
(z−1)2 |
d | d | z | |||
(∑n=0∞nz−n) = | ( | ) | |||
dz | dz | (z−1)2 |
1*(z−1)2−z*2*(z−1) | ||
∑n=0∞−n2z−n−1 = | ||
(z−1)4 |
z−1 − 2z | ||
−∑n=0∞n2z−n−1 = | ||
(z−1)3 |
−1 − z | ||
−∑n=0∞n2z−n−1 = | ||
(z−1)3 |
z(z+1) | ||
∑n=0∞n2z−n−1 = | ||
(z−1)3 |
1 | |
∑n=0∞yn+1z−n−1+∑n=0∞ynz−n = ∑n=0∞n2z−n | |
z |
1 | z(z+1) | ||
∑n=1∞ynz−n +∑n=0∞ynz−n = | |||
z | (z−1)3 |
1 | z(z+1) | ||
(∑n=0∞ynz−n − y(0)z0)+∑n=0∞ynz−n = | |||
z | (z−1)3 |
1 | z(z+1) | ||
Y(z) − y(0)z−1 + Y(z) = | |||
z | (z−1)3 |
1 | z(z+1) | |||
( | Y(z)) + Y(z) = y(0)z−1 + | |||
z | (z−1)3 |
1+z | z(z+1) | ||
Y(z) = y(0)z−1 + | |||
z | (z−1)3 |
Y(z) | y0 | z | |||
= | + | ||||
z | z(z+1) | (z−1)3 |
y0 | z | |||
Y(z)= | + | |||
z+1 | (z−1)3 |
y0z(z−1)3+z(z+1) | ||
Y(z) = | ||
(z+1)(z−1)3 |
(y0z(z−1)3+z(z+1))zn−1 | |
(z+1)(z−1)3 |
(y0z(z−1)3+z(z+1))zn−1 | ||
limz→−1((z+1)* | ) | |
(z+1)(z−1)3 |
(y0z(z−1)3+z(z+1))zn−1 | ((y0)(−1)(−2)3)(−1)(n−1) | |||
limz→−1 | = | = | ||
(z−1)3 | (−2)3 |
8y0 | |
(−1)n−1 = y0(−1)n | |
−8 |
1 | d2 | (y0z(z−1)3+z(z+1))zn−1 | |||
limz→1 | (z−1)3* | ||||
2 | dz2 | z+1 |
1 | d2 | y0z(z−1)3+z(z+1))zn−1 | |||
limz→1 | ( | ) | |||
2 | dz2 | z+1 |
1 | d2 | ((y0(z−1)3+(z+1)zn)) | ||
limz→1 | ||||
2 | dz2 | z+1 |
1 | d2 | (z−1)3zn | |||
limz→1 | (y0 | + zn) | |||
2 | dz2 | z+1 |
1 | ||
Co po obliczeniu da | n(n−1) | |
2 |
1 | ||
y(n) = y0(−1)n + | n(n−1) | |
2 |
z(z+1) | ||
z(∑n=1∞ynz−n) + (∑n=0∞ynz−n) = | ||
(z−1)3 |
z(z+1) | ||
z(∑n=0∞ynz−n − y0) + (∑n=0∞ynz−n) = | ||
(z−1)3 |
z(z+1) | ||
zY(z) − y0z + Y(z) = | ||
(z−1)3 |
z(z+1) | ||
(z+1)Y(z) = y0z + | ||
(z−1)3 |
y0z | z | |||
Y(z) = | + | |||
z+1 | (z−1)3 |
Y(z) | y0 | 1 | |||
= | + | ||||
z | z+1 | (z−1)3 |