| (2x + 1)2 | ex | ||
i | |||
| x2 + 4 | e2x + 4 |
| (2*x + 1)2 | 4*x2 + 4*x + 1 | 4*x − 15 | |||
= | = 4 + | = | |||
| x2 + 4 | x2 + 4 | x2 + 4 |
| 4*x | 15 | |||
4 + | − | |||
| x2 + 4 | x2 + 4 |
| 4*x*dx | ||
I2 = ∫ | Podstawienie: x2 + 4 = t , 2*x*dx = dt | |
| x2 + 4 |
| 15*dx | ||
I3 = ∫ | Podstawienie: x = 2*t dx = 2*dt | |
| x2 + 4 |
| 15*2*dt | 30*dt | 15 | dt | |||||
I3 = ∫ | = ∫ | = | *∫ | = | ||||
| 4*t2 + 4 | 4*(t2 + 1) | 2 | t2 + 1 |
| 15 | 15 | ||
*arctg(t) = | *arctg(x/2) + C3 | ||
| 2 | 2 |
| 15 | ||
I = 4*x + 2*ln(x2 + 4) − | *arctg(x/2) + C1 + C2 − C3 | |
| 2 |
| 15 | ||
I = 4*x + 2*ln(x2 + 4) − | *arctg(x/2) + C | |
| 2 |
| ex*dx | ||
I = ∫ | Podstawienie: ex = t ex*dx = dt | |
| e2*x + 4 |
| dt | 1 | |||
I = ∫ | = | *arctg(t/2} Patrz poprzednia całka | ||
| t2 + 4 | 2 |
| 1 | ||
I = | *arctg(ex/2) + C | |
| 2 |