Rozwiąż równanie
kamczatka: Rozwiąż równanie:
wymnożyłem na krzyż i wyszło:
3+x
2+x(x+1)=(x
2−1)(11−x)
3+x
2+x
2+x=11x
2−2x
2−11+x
14−7x
2=0
x=2
dobrze wyszło ?
2 maj 09:44
eQ: Nie sprawdzilem wymnazania, ale juz zauwazylem jeden blad: x2 = 2 lub −2
2 maj 09:46
eQ: Przepraszam x = 2 lub −2, bez potegi
2 maj 09:46
kamczatka: czyli jak to zapisać ?
2 maj 09:48
kamczatka: bo to jest urywek przykładu a o to cały przykład:
| 3 | | x(x+1) | | 11−x | |
| + |
| = |
| |
| (x−1)(x+1) | | (x−1)(x+1) | | x+1 | |
i właśnie tutaj wymnożyłem tak jak u góry ale nie wiem czemu źle mi wychodzi 11x
2 bo powinno
być 11x i czemu tak mi wychodzi ? Jak ten przykład wymnożę przez (x−1)(x+1) to dobrze wychodzi
ale ja chciałem się dowiedzieć czemu tym sposobem wychodzi mi źle ?
2 maj 09:55
Saizou : zał:
x
2−1≠0→x=±1
x+1≠0→x≠−1
D:x∊R\{−1;1}
(x
2+x+3)(x+1)=(11−x)(x
2−1)
(x
2+x+3)(x+1)−[(11−x)(x
2−1)]=0
(x
2+x+3)(x+1)−[(11−x)(x+1)(x−1)]=0
(x+1)[(x
2+x+3)−(11−x)(x−1)]=0
(x+1)[(x
2+x+3)−(−x
2+12x−11)]=0
(x+1)(x
2+x+3+x
2−12x+11)=0
(x+1)(2x
2−11x+14)=0
2x
2−11x+14=0 x+1=0
Δ=121−112=9 x=−1 (nie spełnia założeń)
√Δ=3
| | 7 | |
zatem odpowiedź x∊{2; |
| } |
| | 2 | |
2 maj 10:01
kamczatka: Dzięki za rozwiązanie,
czyli jednak lepiej w przypadku takich przykładów mnożyć od razu lepiej przez (x−1)(x+1) ? Bo
szybciej i łatwiej.
2 maj 10:03
Saizou : można też tak
| 3 | | x | | 11−x | |
| + |
| − |
| =0 |
| x2−1 | | x−1 | | x+1 | |
| 3 | | x(x+1) | | (11−x)(x−1) | |
| + |
| − |
| =0 /*(x2−1) |
| x2−1 | | x2−1 | | x2−1 | |
3+x(x+1)−(11−x)(x−1)=0
3+x
2+x−(−x
2+12x−11)=0
3+x
2+x+x
2−12x+11=0
2x
2−11x+14=0
2 maj 10:12
kamczatka: a jak Tobie z (11−x)(x−1) wyszło: −x2+12x−11 ?
2 maj 10:19
kamczatka: dobra już wiem
2 maj 10:22