| 1 | 1 | 1 | ||||
∫ ( | − 1)dx = ∫ | dx − ∫ dx = − | + x + C. | |||
| x2 | x2 | x |
| 1 | 1 | ||
= | |||
| x2−1 | (x−1)(x+1) |
| 1 | A | B | ||||
∫ | dx=∫( | + | )dx= | |||
| (x−1)(x+1) | x−1 | x+1 |
| A(x+1)+B(x−1) | (A+B)x+A−B | |||
[ | = | ⇔ | ||
| (x−1)(x+1) | (x−1)(x+1) |
| 1 | 1 | |||
A= | i B=− | ] | ||
| 2 | 2 |
| 1 | 1 | 1 | 1 | 1 | ||||||
∫ | dx= | ∫( | dx− | ∫ | )dx= | |||||
| (x−1)(x+1) | 2 | x−1 | 2 | x+1 |
| 1 | ||
= | (ln|x−1|−ln|x+1|)+C | |
| 2 |