| (n+2)!+(n+1)! | ||
Oblicz granicę ciągu o wyrazie ogólnym an= | ||
| (n+2)!−(n−1)! |
| |||||||||||
limn→∞ | = | ||||||||||
|
| |||||||||||
=limn→∞ | =1 | ||||||||||
|
| (n+2)!+(n+1)! | ||
an= | = | |
| (n+2)!−(n−1)! |
| (n+1)! *(n+2)+(n+1)! | ||
= | = | |
| ((n−1)!*n*(n+1)*(n+2)−(n−1)! |
| (n+1)!(n+2+1) | |
= | |
| (n−1)!*( n*(n+1)*(n+2)−1) |
| (n−1)!*n*(n+1)*(n+3) | *n*(n+1)*(n+3) | |||
= | = | |||
| (n−1)!*(n*(n+1)(n+2)−1) | (n*(n+1)(n+2)−1) |
| *n*(n+1)*(n+3) | ||
Limn→∞ | =1 | |
| (n*(n+1)(n+2)−1) |