Poprowadźmy prostą BD równoległą do PC, wtedy ∠BDC = ∠PCA = ∠DBC, ponieważ ∠DCB = 180−2α.
| DC | BP | BC | BP | |||||
Z talesa: | = | , ale skoro DC=BC to | = | . ckd | ||||
| AC | AP | AC | AP |
z tw. sinusów w ΔAPC
| AP | AC | AP*sinβ | ||||
= | ⇒ sinγ= | |||||
| sinγ | sinβ | AC |
| PB | BC | PB*sinβ | ||||
= | ⇒ sinγ= | |||||
| sinγ | sinβ | BC |
| AP | PB | |||
to | = | |||
| AC | BC |
| c | d | |||
Teza: | = | |||
| b | a |
| b | c | a | d | |||||
w ΔAPC: | = | oraz w ΔPBC: | = | itd. | ||||
| sinδ | sinγ | sinδ | sinγ |