| ||||||||
∫x*arctgx= | =xarctgx−∫arctgxdx=xarctgx− | |||||||
| 1 | ||
g'(x)=11+x2})arctgx−∫ | dx=xarctgx−arctgx+arctgx+c | |
| 1+x2 |
| 1 | ||
f = arctgx f'= | ||
| 1+x2 |
| 1 | 1 | x2 | ||||
= | x2*arctgx − | ∫ | dx = | |||
| 2 | 2 | 1+x2 |
| 1 | 1 | 1 | |||
x2*arctgx − | * ∫(1− | )dx | |||
| 2 | 2 | 1+x2 |
| 1 | 1 | x2 | ||||
∫x arctgx dx = | x2arctgx− | ∫ | dx= cdn | |||
| 2 | 2 | 1+x2 |
| 1 | 1 | |||
[ arctgx=u, | dx=du; dv=x, v=∫xdx= | x2] | ||
| 1+x2 | 2 |
| x2 | x2+1−1 | 1 | ||||
∫ | dx=∫ | dx=∫dx−∫ | dx=x−arctgx | |||
| 1+x2 | x2+1 | 1+x2 |
| 1 | 1 | |||
=cd | x2arctgx− | (x−arctgx)= | ||
| 2 | 2 |
| 1 | 1 | 1 | ||||
= | x2arctgx− | x+ | arctgx+C | |||
| 2 | 2 | 2 |
| −1 | ||
[ arccosx=u, | dx=du, dv=dx, v=x} | |
| √1−x2 |
| −x | ||
∫arccosxdx= xarccosx−∫ | dx=xarccosx−√1−x2+C | |
| √1−x2 |
| −x | ||
rozumiem do momentu xarccosx−∫ | dx | |
| √1−x2 |
| 1 | −x | |||
dt = | *(−2x) dx = | dx | ||
| 2√1−x2 | √1−x2 |
| −x | ||
∫ | dx = ∫dt = t = √1−x2 | |
| √1−x2 |
| 1 | 1 | ||
∫ | dt=√t ( patrz wzory podstawowe) | ||
| 2 | √t |
| −x | ||
dt= | dx | |
| √1−x2 |
| x | ||
−dt= | dx | |
| √1−x2 |
| ||||||||
∫x*cos2x= | =xcos2x−∫cos2x=xcos2x−0,5x−sin2x/4 | |||||||








∫x*cos2x dx
jedną uznajesz za funkcję; drugą za pochodną i stosujesz wzór
∫f' *g = f*g − ∫f*g'
f = cos2x f' = 2cosx*(−sinx) = −sin2x
g' = x g = x2
J = x2*cos2x + ∫x2*sin2x dx
f = x2 f'=2x
| −cos2x | ||
g' = sin2x g = | ||
| 2 |
| x2*cos2x | ||
J = x2*cos2x − | + ∫x*cos2x dx | |
| 2 |
| sin2x | ||
g' = cos2x g= | ||
| 2 |
| x2*cos2x | x*sin2x | 1 | ||||
J = x2*cos2x − | + | − | ∫sin2x dx = | |||
| 2 | 2 | 2 |
| x2*cos2x | x*sin2x | cos2x | ||||
x2*cos2x − | + | + | + C | |||
| 2 | 2 | 4 |
| x2 | ||
g' = x g = | i trzeba wszędzie dalej poprawić | |
| 2 |
| 1 | ||
Wygodnie jest skorzystać z wzoru: cos2x= | (cos2x+1) | |
| 2 |
| 1 | 1 | 1 | 1 | 1 | ||||||
= | ∫(x*(cos2x+1))dx= | ∫xcos2xdx+ | ∫xdx= | ∫xcos2xdx+ | x2=cdn | |||||
| 2 | 2 | 2 | 2 | 4 |
| 1 | ||
[x=u, dx=du; dv=cos2xdx, v= | sin2x] | |
| 2 |
| 1 | 1 | 1 | 1 | |||||
= | (x* | sin(2x)−∫ | sin(2x)dx)+ | x2= | ||||
| 2 | 2 | 2 | 4 |
| 1 | 1 | 1 | |||
xsin(2x)+ | cos(2x)+ | x2+C | |||
| 4 | 8 | 4 |