| 2x | x2 | |||
∫xln(x2+1)dx = u=ln(x2+1) u'= | v'= x v= | |||
| x2 + 1 | 2 |
| x2 | x3 | x2 | x2 | 1 | |||||
ln(x2+1)−∫ | dx = | ln (x2 + 1) − | + | ln x2+1+c | |||||
| 2 | x2+1 | 2 | 2 | 2 |


| 1 | ||
... | ln(x2 + 1) + c | |
| 2 |
| 1 | x3 | |||
E = ∫ x ln(x2 + 1) dx = | x2ln(x2 + 1) − ∫ | dx = | ||
| 2 | x2 + 1 |
| 1 | x | |||
= | x2ln(x2 + 1) − ∫ (x − | ) dx = E | ||
| 2 | x2 + 1 |
| 2x | 1 | |||
u' = | v = | x2 | ||
| x2 + 1 | 2 |
| x | 1 | 2x | ||||
∫ (x − | ) dx = ∫ x dx − | *∫ | dx = | |||
| x2 + 1 | 2 | x2 + 1 |
| 1 | 1 | |||
= | x2 − | ln(x2 + 1) + C1 | ||
| 2 | 2 |
| 1 | 1 | 1 | ||||
E = | x2ln(x2 + 1) − | x2 + | ln(x2 + 1) + C | |||
| 2 | 2 | 2 |
masakra dzieki