Funkcja kwadratowa
Matfizołka: Wyznacz wzór funkcji kwadratowej f(x)=−x2+bx+c, o której wiesz że funkcja jest rosnąca w
przedziale <−3;1>, przyjmuje w nim wartość najmniejszą równą −6 oraz największą równą 3.
14 kwi 10:49
Aga1.: f(−3)=6 i f(1)=3
Ułóż i rozwiąż układ równań.
14 kwi 11:08
Aga1.: Oczywiście f(−3)=−6.
14 kwi 11:08
Janek191:
f(x) = − x
2 + b x + c
f rośnie w < − 3 ; 1 >
oraz
f ( −3) = − 6
f(1) = 3
czyli
− (−3)
2 − 3 b + c = − 6
− 1
2 + b + c = 3
−−−−−−−−−−−−
− 3 b + c = 3
b + c = 4
−−−−−−−−− odejmujemy stronami
− 3 b − b = − 1
− 4 b = − 1 / : ( −4)
−−−−−−
| | 1 | | 3 | |
c = 4 − b = 4 − |
| = 3 |
| |
| | 4 | | 4 | |
−−−−−−−−−−−−−−−−−−
Odp.
| | 1 | | 3 | |
f(x) = − x2 + |
| x + 3 |
| |
| | 4 | | 4 | |
=====================
14 kwi 11:42
Janek191:
f(x) = − x
2 + b x + c
f rośnie w < − 3 ; 1 >
oraz
f ( −3) = − 6
f(1) = 3
czyli
− (−3)
2 − 3 b + c = − 6
− 1
2 + b + c = 3
−−−−−−−−−−−−
− 3 b + c = 3
b + c = 4
−−−−−−−−− odejmujemy stronami
− 3 b − b = − 1
− 4 b = − 1 / : ( −4)
−−−−−−
| | 1 | | 3 | |
c = 4 − b = 4 − |
| = 3 |
| |
| | 4 | | 4 | |
−−−−−−−−−−−−−−−−−−
Odp.
| | 1 | | 3 | |
f(x) = − x2 + |
| x + 3 |
| |
| | 4 | | 4 | |
=====================
14 kwi 11:43
hwdtel:
Kontrola merytoryczna
To policz w takim razie f(0,5)
14 kwi 12:38
*:
Kontrola prawomyślności
Zaraz usuniemy wpis hwdtel i założymy mu szlaban
*Artur miast z matematyki to z telewizji
14 kwi 12:42