Stosunek pół figur podobnych jest równy kwadratowi skali podobieństwa.
| DC | 1 | |||
ΔDGC∼ΔABC w skali k= | = | |||
| AC | 3 |
| 1 | ||
P1= | PΔABC | |
| 9 |
| EC | 2 | |||
ΔEFC∼ΔABC w skali k= | = | |||
| AC | 3 |
| 4 | ||
PΔEFC= | PΔABC | |
| 9 |
| 4 | 1 | 3 | ||||
P2= | PΔABC− | PΔABC= | PΔABC= | |||
| 9 | 9 | 9 |
| 4 | 5 | |||
P3=PΔABC−PΔEFC=PΔABC− | PΔABC= | PΔABC | ||
| 9 | 9 |
| 3 | 5 | 3 | 5 | |||||
P2: P3=( | PΔABC):( | PΔABC)= | : | =3:5 | ||||
| 9 | 9 | 9 | 9 |
Stosunek pół figur podobnych jest równy kwadratowi skali podobieństwa.
| DC | 1 | |||
ΔDGC∼ΔABC w skali k= | = | |||
| AC | 3 |
| 1 | ||
P1= | PΔABC | |
| 9 |
| EC | 2 | |||
ΔEFC∼ΔABC w skali k= | = | |||
| AC | 3 |
| 4 | ||
PΔEFC= | PΔABC | |
| 9 |
| 4 | 1 | 3 | ||||
P2= | PΔABC− | PΔABC= | PΔABC= | |||
| 9 | 9 | 9 |
| 4 | 5 | |||
P3=PΔABC−PΔEFC=PΔABC− | PΔABC= | PΔABC | ||
| 9 | 9 |
| 3 | 5 | 3 | 5 | |||||
P2: P3=( | PΔABC):( | PΔABC)= | : | =3:5 | ||||
| 9 | 9 | 9 | 9 |