| 1 | ||
jak obliczyc taka calke ∫ | ||
| e2x−1 |
| 1 | e2x − 1 | e2x | |||
= − | + | = | |||
| e2x − 1 | e2x − 1 | e2x − 1 |
| 1 | 2e2x | |||
= −1 + | * | |||
| 2 | e2x − 1 |
| 1 | 2e2x | 1 | ||||
∫(1 + | * | )dx = − x + | ln|e2x − 1| + C | |||
| 2 | e2x − 1 | 2 |
| 1 | 1 | |||
∫ | dx=∫ | dx | ||
| e2x−1 | (ex−1)(ex+1) |
| dt | ||
podstawienie :ex=t, exdx=dt, dx= | , no i będą ułamki proste. | |
| t |
| dx | dt | |||
∫ | = e2x−1=t, to e2x= t+1 i 2e2xdx= dt ⇒ dx= | = | ||
| e2x−1 | 2(t+1) |
| 2dt | 1 | 1 | 1 | dt | dt | |||||||
= ∫ | = 2 ∫ | dt= 2 ∫( | − | )dt= 2(∫ | −∫ | )= | ||||||
| t(t+1) | t(t+1) | t | t+1 | t | t+1 |
| t | e2x−1 | |||
= 2(ln|t|−ln|t+1|) = 2ln | | | = 2ln | | |= 2ln|1−e−2x|+C.... ![]() | ||
| t+1 | e2x |