| 2x+1 | ||
∫ | dx = * | |
| (x2+2x+2)2 |
| 2x+1 | Ax+b | Cx+d | |||
= | + | ||||
| (x2+2x+2)2 | x2+2x+2 | (x2+2x+2)2 |
| 0x+0 | 2x+1 | |||
Zatem * = ∫ | + | |||
| x2+2x+2 | (x2+2x+2)2 |
to tak jakbyś chciał zapisać:
| 1 | A | B | |||
= | + | <−−− logiczne że A=0 i B=1 (jedna z możliwości oczywiście ![]() | |||
| 4 | 2 | 4 |
| 2x+1 | 2x+2 −1 | 2x+2 | 1 | ||||
= | = | − | |||||
| (x2+2x+2)2 | (x2+2x+2)2 | (x2+2x+2)2 | (x2+2x+2)2 |
| 2x+1 | 2x+1 | |||
∫ | dx=∫ | dx= | ||
| (x2+2x+2)2 | ((x+1)2+1)2 |
| 2(t−1)+1 | 2t | dt | ||||
=∫ | dt=∫ | dt−∫ | dt | |||
| (t2+1)2 | (t2+1)2 | (t2+1)2 |
| 2t | du | −1 | ||||
∫ | dt=∫ | =∫u−2 du=(−1)*u−1= | = | |||
| (t2+1)2 | u2 | u |
| −1 | −1 | −1 | ||||
= | = | = | ||||
| t2+1 | (x+1)2+1 | x2+2x+2 |
| 1 | t2+1−t2 | t2+1 | t2 | |||||
∫ | dt=∫ | dt=∫ | dt−∫ | dt= | ||||
| (t2+1)2 | (t2+1)2 | (t2+1)2 | (t2+1)2 |
| 1 | t | −t | 1 | 1 | ||||||
=∫ | dt−∫t* | dt=arctgt−[ | + | ∫ | dt= cdn... | |||||
| (t2+1) | (t2+1)2 | 2(t2+1) | 2 | t2+1 |
| t | ||
[druga całka przez części:t=u, dt=du, dv= | dt; | |
| (t2+1)2 |
| 1 | 2t | −1 | ||||
v= | ∫ | dt= | ] | |||
| 2 | (t2+1)2 | 2(t2+1) |
| t | 1 | 1 | t | |||||
=arctgt+ | − | arctgt= | arctgt+ | = | ||||
| 2(t2+1) | 2 | 2 | 2(t2+1) |
| 1 | x+1 | 1 | x+1 | |||||
= | arctg(x+1)+ | = | arctg(x+1)+ | |||||
| 2 | 2[(x+1)2+1] | 2 | 2(x2+2x+2) |
| 2t | 1 | −1 | 1 | x+1 | ||||||
∫ | dt−∫ | dt= | − | arctg(x+1)− | = | |||||
| (t2+1)2 | (t2+1)2 | x2+2x+2 | 2 | 2(x2+2x+2) |
| −2−x−1 | 1 | −1 | x+3 | |||||
= | − | arctg(x+1)= | ( | +arctg(x+1))+C | ||||
| 2(x2+2x+2) | 2 | 2 | x2+2x+2 |
| t | ||
nie rozumiem rozbicia całki ∫t* | dt , mogę prosić o wyjaśnienie? | |
| (t2+1)2 |
| t2 | t | |||
∫ | dt=∫t* | dt teraz przez części | ||
| (t2+1)2 | (t2+1)2 |
| t | ||
[t=u, dt =du, dv= | dt stąd | |
| (t2+1)2 |
| t | ||
v=∫ | dt ale taka całka z licznikiem 2t jest policzona na początku wpisu 22:27, | |
| (t2+1)2 |
| t | 1 | 2t | 1 | −1 | ||||||
v=∫ | dt= | ∫ | dt= | * | ||||||
| (t2+1)2 | 2 | (t2+1)2 | 2 | t2+1 |
| t | 1 | −1 | 1 | −1 | ||||||
∫t* | dt =t* | * | −∫ | * | dt= | |||||
| (t2+1)2 | 2 | t2+1 | 2 | t2+1 |
| −t | 1 | |||
= | + | arctgt | ||
| 2(t2+1) | 2 |
♥
Powodzenia w całkach.