:
Wiedząc, że:
a) log142=a i log145=b, oblicz log750
b)log320=a i log315=b, oblicz log2360.
Z góry dzieki za pomoc.
| logcb | ||
zgodnie ze wzorem: logab= | ||
| logca |
| log1450 | log14(25*2) | |||
log750 = | = | =
| ||
| log147 | log14(142) |
| log1425 +log142 | ||
= | =
| |
| log1414 − log142 |
| 2log145 +log142 | ||
= | =
| |
| log1414−log142 |
| 2log145 +log142 | 2b +a | |||
= | = | |||
| 1 − log142 | 1 −a |
podaj wynik , sprawdzimy.
| log3360 | log3(24*15) | |||
log2360= | = | = | ||
| log32 | log3(2010) |
| log324+log315 | log324+b | ||
= | = | ||
| log320−log310 | a−log3(2010) |
| log324+b | |
.. i teraz nie wiem gdzie tkwi blad i co mam dalej zrobic... | |
| a−a−log310 |
| log3(24*15) | ||
log2360 = | ..... tu jest ok.
| |
| log32 |
| log3( 23*32*5) | 3log32 + 2log33 +log35 | |||
= | = | =
| ||
| log32 | log32 |
| 3log32 +2 +log35 | 3log32 + 2 +log35 | |||
= | = | |||
| log32 | log32 |
| a −b +1 | ||
2log32 + b −1 = a => log32 = | ||
| 2 |
| 3a −b +5 | ||
Odp: powinno Ci wyjść : | ||
| a −b +1 |


wszystko juz sie zgadza
| 3 | ||
log34√27=log333/4= | ||
| 4 |