Dane są wielomiany
Mila: Dane są wielomiany: W(x)=2x3−5x2−8x+20 oraz V(x)= x4−13x2+36. Wyznacz wszystkie liczby
naturalne, które są pierwiastkami wielomianu W(x) * V(x)
3 kwi 20:09
Eta:
W(x)= 2x(x2−4) −5(x2−4)=(x2−4)(2x−5)=(x−2)(x+2)(2x−5)
V(x)=(x2−4)(x2−9)= (x−2)(x+2)(x−3)(x+3)
W(x)*V(x) = (x−2)2(x+2)2(2x−5)(x−3)(x+3)
podaj te pierwiastki, które są liczbami naturalnymi
x={...............
3 kwi 20:18
Kipic: no to pierwiastki wielomianu W(v) * V(x) musza byc takie jak w wielomianach W(x) i V(x)
w W(x)
pierwiastakami bedą :
W(x) =2x
3−5x
2−8x+20
W(x) =x
2(2x−5)−4(2x−5)
W(x) =(2x−5)(x
2−4)
| | 5 | |
wiec x1 = |
| x2 = 2 x3=−2 |
| | 2 | |
a w drugim wielomianie
V(x)=x
4−13x
2+36
wprowadzamy zmienna t=x
2
więc :
V(x)=t
2−13t+36
√Δ=5
t
1=−4 t
2=9
wiec skoro mamy zalozenie t=x
2
to :
x
4=3 x
5=−3 a to dla t=−4 to jest sprzeczne bo zadana liczba podniesiona do kwadratu nie da
liczby ujemnej
no i na koncu rozpatrujesz drugi warunek dla ktorych te pierwiastki sa liczbami naturalnymi
wiec
3 i 2
3 kwi 20:20
Rafi: Eta − Mam do Ciebie pytanie. Ile sie przygotowywujesz do matmy ?
Ile dziennie siedzisz nad tym ? Hm ?

Bo od czasu do czasu przegladam forum i jesteś jedną z bardziej ogarniętych osób
3 kwi 20:20
Eta:
@
Kipic sprawdź jak rozwiązałeś t
2−13t+36=0
3 kwi 20:26
Mila: Dzięki !
3 kwi 20:28
Mila: rozwiązaniem są liczby: 2; −2; 2,5; 3; −3
3 kwi 20:31
Kipic: to sa wlasnie skutki liczenia w pamieci

zamienlem poprostu b z
√Δ w liczeniu miejsc zerowych wiec powinno wyjsc z V(x) t
1 = 4 i
t
2=9
więc x
4=2 x
5=−2 x
6=3 x
7=−3
wiec odpowiedzia jest 2 3 2
3 kwi 20:34
Eta:
Od kiedy to liczby ujemne i ułamki są liczbami naturalnymi?

popraw odpowiedź!
3 kwi 20:35
3 kwi 20:36
Eta:
To pytanie było do "małej mili"
3 kwi 20:36
Rafi: Mila : Rozwiazaniem sa liczby naturalne czyli ≥ 0
3 kwi 20:37
Mila: ale sprawdziłam w odpowiedzi do zadania i liczby ujemne też są...
3 kwi 20:38
Eta:
@
Kipic jeszcze odpowiedz na pytanie
Rafi
3 kwi 20:38
Rafi: To było pytanie do Ciebie Eta
3 kwi 20:46