| ex2 | ||
∫ | dx=? | |
| x |
| xn | ||
ex=∑ | od 0 do ∞ | |
| n! |
| x2n | ||
ex2=∑ | od 0 do ∞ | |
| n! |
| ex2 | x2n−1 | ||
=∑ | od 0 do ∞ | ||
| x | n! |
| ex2 | x2n−1 | 1 | x | x3 | ||||||
∫ | dx= ∫ ∑ | dx = ∫ ( | + | + | +....)dx= | |||||
| x | n! | x | 1! | 2! |
| 1 | x2n−1 | |||
=∫ | dx + ∫ ∑ | z tym ze szereg od n=1 do ∞ | ||
| x | n! |
| ex2 | x2n | |||
∫ | dx = ln|x| + ∑ | od 1 do ∞ + C | ||
| x | n!(2n |