| lnx | 1 | ||
czy mozna ja rozwiazac przez czesci tak u=lnx v'= | |||
| x√x | x√x |
| 1 | 3 | |||
u'= | v=∫x− | dx | ||
| x | 2 |
| 3 | 3 | 3 | 5 | |||||
x− | lnx−∫x−1x− | =x− | lnx−∫x− | |||||
| 2 | 2 | 2 | 2 |
| −2lnx | 4 | ||
− | + C | ||
| √x | √x |
czy ktos moglby pokazac mi jak to rozwiazac?
| −2 | ||
∫x−32dx= | +C | |
| √x |
| x−32+1 | x−12 | −2 | ||||
bo | = | = | ||||
| −32+1 | −12 | x12 |