matematykaszkolna.pl
BŁAGAM O POMOC ala: rysunekDługosc odcinków , z których składa sie spirala (rysunek obok), tworza ciag geometryczny o ilorazie q=0,9. Uzasadnij,że jeśli najdłuzszy z odcinków ma długosc 2, to suma długosci dowolnej liczby poczatkowych odcinków tej spirali jest mniejsza od 20. Jeśli jest ktoś na tyle dobry z matematyki alby to zrobić prosze rówinież o dokładne WYTŁUMACZENIE
24 mar 15:09
irena_1: Długość takiej spirali: 2+2*0,9+2*0,92+2*0,93+... To suma nieskończonego ciągu geometrycznego. Taka suma istnieje (bo q=0,9 i 0<0,9<1) i jest równa
 1 2 
S=

=

=20
 1−0,9 0,1 
Jeśli ilość odcinków spirali jest skończona, to jej długość na pewno jest mniejsza od 20. Jeśli liczba odcinków jest równa skończonej liczbie n, to długość łamanej jest równa
 1−0,9n 
Ł=2*

=20*(1−0,9n)
 1−0,9 
Ponieważ 1−0,9n<1, to Ł<20
24 mar 15:25
ala: dzoekuje !
24 mar 16:39