−4x2−3 | ||
oblicz calke ∫ | ||
x4+2x2+1 |
4x2+3 | ||
−1∫ | dx | |
(x2+1)2 |
4x2+3 | Ax+B | Cx+D | |||
= | + | /(x2+1)2 | |||
(x2+1)2 | x2+1 | (x+1)2 |
Ax+B | Cx+D | |||
−1(∫ | +∫ | dx) | ||
x2+1 | (x2+1)2 |
−4x2−4+1 | −4(x2+1)+1 | |||
∫ | dx=∫ | dx= | ||
(x2+1)2 | (x2+1)2 |
−4 | 1 | |||
=∫ | dx+∫ | dx | ||
x2+1 | (x2+1)2 |
1 | ||
J=∫ | dx dasz radę dalej? | |
(x2+1)2 |
1 | x2+1−x2 | |||
∫ | dx=∫ | dx= | ||
(x2+1)2 | (x2+1)2 |
x2+1 | x2 | 1 | x | |||||
=∫ | dx−∫ | dx=∫ | dx−∫x* | dx=drugą całkę | ||||
(x2+1)2 | (x2+1)2 | x2+1 | x2+1)2 |
x | x | −1 | ||||
przez części [x=u; dx=du, dv= | ;⇔v=∫ | dx= | policz] | |||
x2+1)2 | x2+1)2 | 2(x2+1) |
−1 | 1 | 1 | ||||
= arctgx−[x* | + | ∫ | dx] | |||
2(x2+1) | 2 | (x2+1) |
x | 1 | 1 | x | |||||
=arctgx+ | − | arctgx= | arctgx+ | |||||
2(x2+1) | 2 | 2 | 2(x2+1) |
1 | 1 | x | ||||
całka∫ | dx= | arctgx+ | +C | |||
(x2+1)2 | 2 | 2(x2+1) |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |