| 1 | 1 | 1 | |||
√ | + | −√2=−√2(2+ctg2x) | |||
| sinx | 1+cosx | 1−cosx |
| 1 | 1 | |||
+ | jest pod pierwiastkiem | |||
| 1+cosx | 1−cosx |
| 1 | 1 | |||
+ | jest pod pierwiastkiem | |||
| 1+cosx | 1−cosx |
| 1 | 1 | 1−cosx+1+cosx | |||
+ | = | = | |||
| 1+cosx | 1−cosx | (1+cosx)(1−cosx) |
| 2 | 2 | ||
= | |||
| 1−cos2x | sin2x |
| 1 | 2 | |||
L = | *√ | − √2 = | ||
| sinx | sin2x |
| 1 | √2 | ||
* | − √2 = | ||
| sinx | sinx |
| √2 − √2sin2x | |
= | |
| sin2x |
| √2*(1−sin2x) | |
= | |
| sin2x |
| √2*cos2x | |
= √2*ctg2x ≠ P | |
| sin2x |
| 1 | 2 | |||
L = | *√ | − √2 = | ||
| sinx | sin2x |
| 1 | √2 | ||
* | − √2 = | ||
| sinx | −sinx |
| −√2 + √2sin2x | |
= | |
| sin2x |
| −√2*(1−sin2x) | |
= | |
| sin2x |
| −√2*cos2x | |
= −√2*ctg2x ≠ P | |
| sin2x |