prawdopodobieństwo
....: Pokaż, że jeśli P(A) = 13 , P(B) = 14, to 14< P(A u B) ≤ 712 i P(A n B) ≤
14
17 mar 21:50
irena_1:
A ⊂ (A∪B), więc P(A) ≤ P(A∪B)
i
B ⊂ (A∪B), więc P(B) ≤ P(A∪B)
czyli
| | 1 | | 1 | |
P(A∪B) ≥ P(A)= |
| i P(A∪B) ≥ P(B)= |
| |
| | 3 | | 4 | |
stąd
P(A∪B)=P(A)+P(B)−P(A∩B)
Ponieważ P(A∩B) ≥ 0, więc
| | 1 | | 1 | | 7 | |
P(A∪B) ≤ P(A)+P(B)= |
| + |
| = |
| |
| | 3 | | 4 | | 12 | |
Czyli:
| 1 | | 1 | | 7 | |
| < |
| ≤ P(A∪B) ≤ |
| |
| 4 | | 3 | | 12 | |
(A∩B) ⊂ A oraz (A∩B) ⊂ B
więc
| | 1 | | 1 | |
P(A∩B) ≤ P(A)= |
| i P(A∩B) ≤ P(B)= |
| |
| | 3 | | 4 | |
Czyli
18 mar 10:34