| x4 | ||
b) (x4*lnx)'=(x4)'lnx+x4*(lnx)'=4x3lnx+ | ||
| x |
| ex | ||
c) (ex*lnx)'=(ex)'*lnx+ex*(lnx)'=ex*lnx+ | ||
| x |
| x2 | (x2)'*(x+1)−x2*(x+1)' | 2x2+2x−x2 | ||||
d) ( | )'= | = | ||||
| x+1 | (x+1)2 | (x−1)2 |
| x2+2x | ||
= | ||
| x2+2x+1 |
| x3 | (x3)'*ex−x3*(ex)' | 3x2*ex−x3*ex | ||||
e) ( | )'= | = | =3x2−x3 | |||
| ex | (ex)2 | e2x |
| 3x2−x3 | ||
e) brakuje mianownika− tam powinno wyjść | ||
| ex |