| 1 | ||
1. 2log(1/2)2x + log1/2 | > 1 | |
| x |
| 1−3 | 1 | |||
t1 = | = − | |||
| 4 | 2 |
| 1+3 | ||
t2 = | = 1 | |
| 4 |
| 1 | ||
t∊(−∞, − | ) ∪ (1,+∞) | |
| 2 |
| 1 | ||
t < − | lub t > 1 | |
| 2 |
| 1 | ||
log1/2x < − | log1/2x > 1 | |
| 2 |
| 1 | ||
log1/2x < log1/2 √2 log1/2x > log1/2 | ||
| 2 |
| 1 | ||
x > √2 x < | ||
| 2 |
| 1 | ||
x ∊ (−∞, | ) ∪ (√2,+∞) | |
| 2 |