| 2n + 1 | 1 | |||
an + an+1 = | i an − an+1 = | |||
| n2 + n | n2 + n |
| 2n + 1 | ||
x + y = | ||
| n(n + 1) |
| 1 | ||
x − y = | ||
| n(n + 1) |
| 2n + 1 + 1 | ||
2x = | ||
| n(n + 1) |
| 2(n + 1) | ||
2an = | Skracamy n + 1 (wiemy, że jest różne od 0). | |
| n(n + 1) |
| 2 | ||
2an = | ||
| n |
| 1 | ||
an = | ||
| n |
| 1 | ||
Wzór ogólny ciągu = | ||
| n |
| 1 | ||
to.. an = | ||
| n |