| π | 3π | |||
rozwiaz rownanie √3cosx+ sinx=sinxtgx+ √3sinx ; x∊<− | , | > | ||
| 2 | 2 |
| π | π | 3π | ||||
cosx≠0→ x≠− | , | , | ||||
| 2 | 2 | 2 |
| sinx | ||
√3cosx+sinx=sinx | +√3sinx | |
| cosx |
| √3cos2x+sinxcosx−√3sinxcosx−sin2x | |
=0 | |
| cosx |
| cosx(√3cosx+sinx)−sinx(√3cosx+sinx) | |
=0 | |
| cosx |
| (cosx−sinx)(√3cosx+sinx) | |
=0 | |
| cosx |
| 1 | ||
(cosx−sinx)(√3cosx+sinx)=0 /* | ||
| 2 |
| √3 | 1 | |||
(cosx−sinx) ( | *cosx+ | *sinx)=0 | ||
| 2 | 2 |
| π | ||
cosx= sinx v sin(x+ | )=0 | |
| 3 |
| π | ||
1)cosx=cos( | −x) | |
| 2 |
| π | ||
x= | −x | |
| 2 |
| π | ||
2x= | / :2 | |
| 2 |
| π | ||
x= | ||
| 4 |
| π | ||
2)x+ | =0 | |
| 3 |
| π | ||
x=− | dobrze? | |
| 3 |