Oblicz granicę ciągu
Alex: Wiedząc, że lim(1+an)1an=e, o ile liman=0 i an≠0, dla n∊N+ , oblicz granicę ciągu
n→∞ n→∞
o wyrazie ogólnym en: en={1+6n}n
7 mar 12:11
Janek191:
| | 6 | | 6 | |
an = ( 1 + |
| )n = [( 1 + |
| )n6]6 |
| | n | | n | |
zatem
lim a
n = e
6
n→
∞
7 mar 15:31
Janek191:
| | 6 | | 6 | |
an = ( 1 + |
| )n = [( 1 + |
| )n6]6 |
| | n | | n | |
zatem
lim a
n = e
6
n→
∞
7 mar 15:32
Janek191:
| | 6 | | 6 | |
en = ( 1 + |
| )n = [ ( 1 + |
| )n6 ]6 |
| | n | | n | |
więc
lim e
n = e
6
n→
∞
7 mar 15:35
Janek191:
| | 6 | | 6 | |
en = ( 1 + |
| )n = [ ( 1 + |
| )n6 ]6 |
| | n | | n | |
więc
lim e
n = e
6
n→
∞
7 mar 15:36