| π − 2arctgx | π−2*0 | |||
limx−>0 | = [ | ] = 0 | ||
| ln(1+1/x) | ln[∞] |
Dzięki
| 1 | ||
limx−>0( | − ctg2x) = [∞ − ∞] (dam do wspólnego mianownika): | |
| x2 |
| 1− x2*ctg2x | 1 − 0*∞ | |||
limx−>0( | ) = [ | ] = | ||
| x2 | 0 |
|
| |||||||||||||||||||||
limx−>0( | ) = [ | ] ...i takie coś liczyć? | ||||||||||||||||||||
| x2 | 0 |
| 1 | cos2x | sin2x − x2*cos2x | ||||
limx−>0( | − | ) = | = [U{0 − | |||
| x2 | sin2x | x2*sin2x |
| sin2x − x2*cos2x | 0 | |||
limx−>0 | = [ | H | ||
| x2*sin2x | 0 |
| 2sin2x − (2x*cos2x − 2sin2x*x2) | ||
limx−>0 | = | |
| x2*sin2x |
| 2sin2x − 2x*cos2x + 2sin2x*x2) | ||
limx−>0 | = | |
| x2*sin2x |
| 2sin2x (1+x2) − 2x*cos2x) | ||
limx−>0 | = | |
| x2*sin2x |
| 1 | 1 | 1 | tg2x − x2 | |||||
limx−>0 ( | − ctg2x}) = | − | = | |||||
| x2 | x2 | tg2x | x2*tg2x |
| 0 | ||
=[ | ] | |
| 0 |
| |||||||||||
limx−>0 | = ...też chyba będzie trudno | ||||||||||
|