| n −1 | ||
an = | ||
| n |
| 4 n − 1 | ||
bn = | ||
| n |
| ( n + 1) − 1 | n | |||
an + 1 = | = | |||
| n + 1 | n + 1 |
| n −1 | ||
an = | ||
| n |
| 4 n − 1 | ||
bn = | ||
| n |
| ( n + 1) − 1 | n | |||
an + 1 = | = | |||
| n + 1 | n + 1 |
| n | n − 1 | |||
an + 1 − an = | − | = | ||
| n + 1 | n |
| n*n − ( n −1)*( n + 1) | ||
= | = | |
| ( n + 1)*n |
| n2 − ( n2 − 1) | 1 | |||
= | = | > 0 , bo n*( n + 1) > 0 | ||
| ( n + 1)*n | n*( n + 1) |
| n − 1 | 4 n − 1 | 5 n − 2 | ||||
cn = an + bn = | + | = | ||||
| n | n | n |
| 5*(n + 1) − 2 | 5 n + 5 − 2 | |||
c n + 1 = | = | = | ||
| n + 1 | n + 1 |
| 5 n + 3 | ||
= | ||
| n + 1 |
| 5 n + 3 | 5 n − 2 | |||
cn + 1 − cn = | − | = | ||
| n + 1 | n |
| ( 5 n + 3)*n − (5 n − 2)*(n + 1) | ||
= | = | |
| ( n + 1)* n |
| 5 n2 + 3 n − ( 5 n2 + 5 n −2 n − 2) | 2 | |||
= | = | > 0 | ||
| n*(n + 1) | n* (n + 1) |
| n −1 | ||
an = | ||
| n |
| 4 n − 1 | ||
bn = | ||
| n |
| ( n + 1) − 1 | n | |||
an + 1 = | = | |||
| n + 1 | n + 1 |
| n | n − 1 | |||
an + 1 − an = | − | = | ||
| n + 1 | n |
| n*n − ( n −1)*( n + 1) | ||
= | = | |
| ( n + 1)*n |
| n2 − ( n2 − 1) | 1 | |||
= | = | > 0 , bo n*( n + 1) > 0 | ||
| ( n + 1)*n | n*( n + 1) |
| n − 1 | 4 n − 1 | 5 n − 2 | ||||
cn = an + bn = | + | = | ||||
| n | n | n |
| 5*(n + 1) − 2 | 5 n + 5 − 2 | |||
c n + 1 = | = | = | ||
| n + 1 | n + 1 |
| 5 n + 3 | ||
= | ||
| n + 1 |
| 5 n + 3 | 5 n − 2 | |||
cn + 1 − cn = | − | = | ||
| n + 1 | n |
| ( 5 n + 3)*n − (5 n − 2)*(n + 1) | ||
= | = | |
| ( n + 1)* n |
| 5 n2 + 3 n − ( 5 n2 + 5 n −2 n − 2) | 2 | |||
= | = | > 0 | ||
| n*(n + 1) | n* (n + 1) |