| 17 | ||
| 4 |
r = 0,5
R = 4
c = 2R = 8
(a − 0,5) + (b − 0,5) = c
a + b − 1 = 8
a + b = 9
a2 + b2 = c2
rozwiązujemy powyższy układ równań:
b = 9 − a
a2 + 81 − 18a + a2 = 64
2a2 − 18a + 17 = 0
Δ = 324 − 136 = 188
√Δ = 2√47
| 18−2√47 | 9−√47 | |||
a1 = | = | |||
| 4 | 2 |
| 9+√47 | ||
a2 = | ||
| 2 |
| 9−√47 | 9+√47 | |||
b1 = 9 − | = | |||
| 2 | 2 |
| 9+√47 | 9−√47 | |||
b2 = 9 − | = | |||
| 2 | 2 |
| 1 | 1 | 9+√47 | 9−√47 | 1(9+√47)(9−√47) | ||||||
P = | ab = | * | * | = | = | |||||
| 2 | 2 | 2 | 2 | 8 |
| 81−47 | 34 | 17 | ||||
= | = | = | ||||
| 8 | 8 | 4 |