| 3n+1 | ||
an= | ||
| n+2 |
| 3(n+1)+1 | 3n+1 | ||
− | |||
| n+1+2 | n+2 |
| 3n+1 | 3n+1 | (3n+4)(n+2) | (3n+1)(n+3) | ||||
− | = | − | |||||
| n+3 | n+2 | (n+3)(n+2) | (n+3)(n+2) |
| 3n2+4n+8−3n2−9n−n−3 | |
| n2+2n+3n+6 |
| −6n+5 | |
<0 | |
| (n+3)(n+2) |
| 3(n+2)−5 | 5 | ||
=3− | ... i wniosek ? | ||
| n+2 | n+2 |
| 3(n+2)−5 | ||
Mogę prosić o wytłumaczenie skąd się wzęło | ? | |
| n+2 |