| x3+2x2+x−2 | x3x | x2−1 | x(x2+1) | |||||
∫ | dx = ∫ | dx + 2∫ | dx =∫ | dx + | ||||
| x2−1 | x2−1 | x2−1 | x2−1 |
| x(x2+1) | x(x2−1+2) | |||
∫ | dx = ∫ | dx | ||
| x2−1 | x2−1 |
| t+2 | 1 | |||
1/2 ∫ | dt = 1/2[∫dt + 2∫1/t dt] = 1/2 t + ln|t| + C = | (x2−1) + ln|x2−1| + C | ||
| t | 2 |
| 1 | ||
= | (x2−1) + ln|x2−1| + 2x + C | |
| 2 |
| 1 | x2 | |||
jest w pierwszym elemencie tj zamiast | (x2−1) powinno być | |||
| 2 | 2 |
wielkie dzięki, nie wpadłbym na to