matematykaszkolna.pl
szkoła podstawowa bibi: Co to za cyfry spełniające podany warunek? FORTY + TEN + TEN −−−−−−−−−−−−−−−−−−−− = S I XTY
27 lut 09:36
Artur_z_miasta_Neptuna: zapewne każda litera oznacza inną cyfrę ... tak
27 lut 09:38
bibi: tak
27 lut 09:39
Artur_z_miasta_Neptuna: w takim razie:
 N 
Y+N+N = 10*a + Y ⇒ 2N = 10a ⇒ a =

... czyli N=0 i a=0 lub N=5 i a=1
 5 
 E 
a +T+E+E = 10*b + T ⇒ a + 2E = 10b ⇒ a≠1 ... czyli a=0 i N=0 ... oraz b=

... czyli E=0 i
 2 
b=0 lub E=5 i b=1 ... jako że N=0 to E≠0 ... czyli E=5 i b=1 b +R + T+T = 10*c + X ⇒ 1+ R+2T = 10*c+ X ⇒ na pewno c<3 (bo 30 > 27 = 2*9+8 + 1 <−−− maksymalny możliwy rozkład z równania) i na razie tyle można powiedzieć c + O = 10*d+ I ⇒ na pewno d<2 d+ F = S ⇒ na pewno d≠0 (bo wtedy F=S <−−−sprzeczne) ... a więc d=1 czyli: F +1 = S czyli: c+O = 10+I <−−− z tego wynika może, że c=1 ⇒ O = 9+I co jest niemożliwe ... czyli c=2 ⇒ O = 8+I ... czyli O = 9 i I = 1 czyli: 1+R+2T = 20+X ⇒ R+2T = 19+X ⇒ R≥5 ... czyli R=6 i T=8 i X=3 lub R=7 i T = 8 i X=4 jeżeli R=6 i T=8 i X=3 to zostają nam takie wolne cyfry: 2 , 4 , 7 <−−−wśród nich ma zachodzić F +1 = S <−−− sprzeczne czyli: R=7 i T = 8 i X=4 ... zostają wtedy cyfry: 2, 3, 6 ... czyli F=2 i S=3 a więc Y = 7 29786 850 850 31486
27 lut 10:11