| 2sin2x+sinx | ||
Rozwiąż równanie: | =0 w przedziale ≤0;2π≥ | |
| (cosx−1)(4cos2 x−3) |
| √3 | ||
cosx≠1 i lcosxl= | ||
| 2 |
| π | π | |||
x≠2kπ i x≠ | +kπ i x≠− | +kπ | ||
| 6 | 6 |
| 2sinx2+sinx | |
=0 /*(cosx−1)(4cos2x−3) | |
| (cosx−1)(4cos2x−3) |
| 1 | ||
sinx=− | ||
| 2 |
| 7 | 11 | |||
x∊{π; | π: | π} | ||
| 6 | 6 |