| 1 | ||
∫ √tg4x* | dx | |
| cosx |
| tg2x | sin2x | sin2x | ||||
A potem... f(x) = | = | = | *cosx | |||
| cosx | cos3x | (1−sin2x)2 |
wybacz.
| √tg5x | ||
∫ | dx | |
| cosx |
| dx | ||
2udu = | . | |
| cos2x |
| 1 | 1 | |||
cosx = | = | (Pitagoras) | ||
| L | √1+u2 |
| √tg5x | dx | 1 | ||||
∫ | dx = ∫√tg5xcosx | = ∫u5* | *2udu | |||
| cosx | cos2x | √1+u2 |
| 2u6 | ||
= ∫ | du | |
| √1+u2 |