a )y'=√sinx = 12 (sinx) 12−1*(sinx)' = 12 (sinx) 12−1 *cos = 12
(sinx) −12 *cosx2
b) y'= x3*lnx = (x3*lnx))' = (x3)' *lnx +x3*(lnx)' = 2*x2*lnx +x3 *1x =3*x2
*lnx+x2
c)y'= (x2*(x−1)3)' =2*x*(x−1)3+x2*((x−1)3)' =2*x*(x−1)3+x2*3*(x−1)(3−1)*1
=2*x*(x−1)3+3*x2*(x−1)2
| 1 | 1 | 1 | ||||
d )y' = arctg 1x = | * ( | )' = | *(x−1) = | |||
| 1x2 + 1 | x | 1x2 + 1 |
| 1 | ||
*(−x)2 | ||
| 1x2 + 1 |
| −cos *lnx−sin* 1x | −cos *lnx− sin* 1x | |||
y'= sinlnx = | = | |||
| (lnx)2 | (lnx)2 |
| −cos *lnx− sinxx | ||
= | ||
| (lnx)2 |
| 1 | ||
a) (√sinx)'= | * cosx | |
| 2√sinx |
przy funkcjach trygonometrycznych co to jest cos bez
zmiennej ?
| 1 | 1 | 1 | 1 | |||||
a)y'=√sinx = √sinx = | (sinx) | *{sinx)' = | (sinx) | − | ||||
| 2 | 2 | 2 | 2 |
| 1 | ||
U{ 1}*{cosx x) = | * cosx | |
| 2 √sinx |