| √n+2−√n+1 | ||
an= | ||
| √n+1−√n |
| √1−√1 | ||
no oke moja propozycja: wszystko przez n i zostaną | ||
| √1−√n |
| ∞ | |
| ∞ |
| √n+2−√n+1 | √n+1+√n | |||
limn→∞ | * | * | ||
| √n+1−√n | √n+1+√n |
| √n+2+√n+1 | ||
* | = | |
| √n+2+√n+1 |
| (n+2−n−1)*(√n+1+√n) | ||
=limn→∞ | = | |
| (n+1−n)(√n+2+√n+1) |
| √n*(√1+1n+1) | ||
=limn→∞ | =1 | |
| √n(√1+2n+√1+1n) |
| ∞−∞ | ||
"sprzęż to podwójnie", masz symbol: | ||
| ∞−∞ |
| √n+2−√n+1 | ||
lim n→∞ | = masz symbol nieoznaczony | |
| √n+1−√n |
| √n+2−√n+1 | √n+1+√n | |||
=lim n→∞ | * | = | ||
| √n+1−√n | √n+1+√n |
| (√n+2−√n+1)(√n+1+√n) | ||
=limn→∞ | = | |
| n+1−n |
| (√n+2+√n+1) | ||
=imn→∞(√n+2−√n+1)(√n+1+√n)* | = | |
| (√n+2+√n+1) |
| (n+2−n−1)(√n+1+√n) | ||
=lim | = | |
| (√n+2+√n+1) |
| √n*(√1+1/n+1) | ||
=lim | =1 | |
| √n*(√1+2/n+√1+1/n |
| 2 | ||
=[ | ] | |
| 2 |