| x4 | ||
∫ | = | |
| x2+2 |
| x4+4−4 | x4−4 | x4+4 | ||||
∫ | =∫ | +∫ | =∫U{(x2−2)(x2+2)}{x2 | |||
| x2+2 | x2+2 | x2+2 |
| x4+4 | 4 | 1 | 1 | |||||
+2}+∫ | =∫x2−2+∫ | =∫x2−2+4∫ | = | x2+1 | ||||
| x2+2 | x2+2 | x2+2 | 2+1 |
| x4 | x2(x2+2) − 2(x2+2) − 4 | 4 | ||||
f(x) = | = | = x2 − 2 − | ||||
| x2+2 | x2+2 | x2+2 |
| 1 | 4 | x | ||||
∫f(x)dx = | x3 − 2x − | arctan( | ) + c. | |||
| 3 | √2 | √2 |
| x4 | x2(x2+2) − 2(x2+2) + 4 | 4 | ||||
f(x) = | = | = x2 − 2 + | ||||
| x2+2 | x2+2 | x2+2 |
| 1 | 4 | x | ||||
∫f(x)dx = | x3 − 2x + | arctan( | ) + c. | |||
| 3 | √2 | √2 |
| (1−√x)3 | ||
∫ | ||
| x |
| (1−√x)3 | (1−t)3 | 2 | ||||
∫ | dx = ∫ | *2tdt = ∫( | −6+6t−2t2)dt = | |||
| x | t2 | t |
| 2 | ||
= 2lnt − 6t + 3t2 − | t3 + c = ... | |
| 3 |