matematykaszkolna.pl
funkcje sylw.: dana jest funkcja f okreslona wzorem (x+1)2 dla x∊(−,0) f(x)= 2x−2 dla x∊<0;3> 5 dla x∊(3,+) a) wyznacz f(1) b) wyznacz f(100) c) wyznacz x, jeśli wiadomo, że f(x)=7
11 lip 21:42
Max: Do którego przedziału należy 1? " " " " " " 100? policz , to prosteemotka
11 lip 21:57
sylw.: ehh
11 lip 21:59
sylw.: hm czy tu poprostu pod x podstawiam sobie te wartości?
12 lip 14:31
tim : 1. Szukasz do którego przedziału należy 1 i podstawiasz do funkcji przy przedziale. 2. − | | − 3. Jak zrobisz 1 i 2 powiem 3
12 lip 14:43
sylw.: okemotka to już robię
12 lip 14:47
sylw.: a) f(1)=0 b) f(100)=5 c) ?
12 lip 14:58
tim : a i b) Świetnie emotka c) I teraz: I WARIANT: (x < 0) 7 = (x + 1)2 II WARIANT: (0 ≤ x ≤ 3) 7 = 2x − 2 III WARIANT: (x > 3) 7 = 5 Rozwiązujesz każdy z wariantów i sprawdzasz (po rozwiązaniu) czy x, który ci wyszedł należy do przedziału. Pokażę II. II WARIANT: (0 ≤ x ≤ 3) 7 = 2x − 2 9 = 2x x = 4,5 (ale nie należy do przedziału, więc odpada)
12 lip 15:01
sylw.: a czy przypadkiem w pierwszy wariancie nie zgubiłeś −2? hm chyba powinno by,ć: 7=(x+1)2−2
12 lip 15:03
tim : Dlaczego minus 2? Cytat: (x+1)2 dla x∊(−,0) f(x)= 2x−2 dla x∊<0;3> 5 dla x∊(3,+)
12 lip 15:06
sylw.: a czyli mój błąd bo źle przepisałam.. przykład jest: {(x+1)2−2 dla x∊(−;0) f(x)= {2x−2 dla x∊<0;3> {5 dla x∊(3;+)
12 lip 15:10
tim : No to teraz całkowicie zmienia rzecz Popraw sobie wariant I i podaj odpowiedź.
12 lip 15:11
sylw.: ale to i tak wychodzi a) f(1)=0 b) f(100)=5 c) (x+1)2−2=7 x2−2x−8=0 x1=−2 ⋁ x2=4 x1∊(−;0) x2∉(−,0) 2x−2=7 2x=9 x=4,5 x∉<0;3 5=7 ?
12 lip 15:14
tim : c) Nie rozumiem po co korzystać z równania kwadratowego: Powstaje: (x + 1)2 − 2 = 7 (x + 1)2 = 9 x = −4 x = 2 II WARIANT Ok. III WARIANT 5 ≠ 7, więc nie ma Popraw I.
12 lip 15:17
sylw.: ok, wielkie dzięki
12 lip 16:26