wielomiany
Kipic: Reszta z dzielenia wielomianu w przez dwumian x+2 wynosi −1 wyznacz reszte z dzielenia
wielomianu przez wielomian p(x) = x2−x−6 wiedzac ze 3 jest miejscem zerowym wielomianu w.
prosze o wskazowki
10 lut 13:04
Tad:
... policz miejsca zerowe wielomianu p −
10 lut 13:17
Tad:
... i co? ... a mało tej podpowiedzi

?−
10 lut 14:05
Kipic: miejsca zerowe tego wielomianu wyszly mi x
1 = −2 i x
2 = 3 ale to i tak za malo zeby
obliczyc
10 lut 15:26
Kipic: pomocy ratunku ....
10 lut 15:50
Tad:
zatem P(x)=(x−3)(x+2)
Zauważ, że
W(−2)=−1
W(3)=0
... jeszcze mało?−
10 lut 16:02
Kipic: dalej nie wiem co do czego podstawic
10 lut 16:04
Kipic: wogule to co licze z odpowiedziami niema nic wspolnego
10 lut 16:13
Tad:
Skoro dzielisz W(x) przez P(x) ...
Jeśli W(x) oraz P(x) są wielomianami i P(x) nie jest wielomianem zerowym, to istnieją
takie dwa wielomiany Q(x) oraz R(x), że W(x)=P(x)*Q(x) + R(x),
gdzie R(x)=0 lub st.R(x) <st.P(x)
... to jak wygląda ta reszta

?
10 lut 16:18
Tad:
R=ax+b
−1=−2a+b
0=3a+b rozwiązuj układ równań i wnioskuj −
10 lut 16:29
Kipic: | | 1 | | 3 | |
wyliczylem a= |
| b=− |
| |
| | 5 | | 5 | |
glowkowalem co dalej ale jakos nie idzie czy teraz trzeba cos dzielic ?
10 lut 17:00
Kipic: up
pomoze ktos ?
10 lut 17:29
Kipic: up
10 lut 18:10
Kipic: pomocy niech ktos mi pomoze prosze
10 lut 18:56
Kipic:
10 lut 19:05
Kipic: up
11 lut 16:09
Skipper:
... a dobrze przepisałeś to zadanie?
11 lut 16:37
Mila: W(−2)=−1
W(3)=0
x2−x−6=(x+2)*(x−3)
W(x)=(x+2)*(x−3)*Q(x)+R(x)
dzielisz przez wielomian stopnia drugiego, to R(x) ma stopień<2, w takim razie ma postać:
R(x)=ax+b
R(−2)=−1
R(3)=0
−2a+b=−1
a*3+b=0
dokończ
11 lut 16:43
Kipic: a takie buty dzieki teraz wszytsko jasne
11 lut 16:47
Kipic: Mam takie zadanie podobne do tego tylko rozni sie ze jest do potegi 3
a oto zadanie:
Reszta z dzielenia wielomianu w przez dwumian x − 1 wynosi 3 , przez x + 2 wynosi 6 , a przez
x − 3 wynosi 21. Oblicz reszte z dzielenia wielomianu w przez wielomian:
q(x) = x
3 − x
2 − 5x + 6.
czy tutaj R(x)=ax + b mozna zastosowac bo mi sie wychodzi a probwalem robic tak jak powyzej
prosze o pomoc
11 lut 17:17
Mila:
Jeśli dzielisz przez wielomian 3 stopnia, to reszta jest wielomianem stopnia <3,
zakładamy, że 2.
R(x)=ax2+bx+c
Podobne zadanie już Ci robiłam, chyba nie przeczytałeś rozwiązania.
W(x)=(x−1)(x+2)(x−3)*Q(x)+R(x),
R(x)=ax2+bx+c
11 lut 17:32
Skipper:
zobacz co tam wysoko ... na czerwono masz napisane o stopniu reszty
11 lut 17:33
Kipic: czytalem ale pewnie wypadlo mi z bani
11 lut 17:34