| √x2+1−√x+1 | ||
lim | =? | |
| 1−√x+1 |
! niech mi ktoś to zrobi
| √x2+1−√x+1 | |
= | |
| 1−√x+1 |
| √x2+1−√x+1 | √x2+1+√x+1 | |||
= | * | = | ||
| 1−√x+1 | √x2+1+√x+1 |
| x2−x | ||
= | = | |
| (1−√x+1)*(√x2+1+√x+1) |
| x(x−1) | 1+√x+1 | |||
= | * | = | ||
| (1−√x+1)*(√x2+1+√x+1) | 1+√x+1 |
| x(x−1)*(1+√x+1) | (x−1)*(1+√x+1) | |||
= | = | |||
| −x*(√x2+1+√x+1) | (−1)(√x2+1+√x+1) |
| (x−1)*(1+√x+1) | −2 | |||
lim{x→0} | = | =1 | ||
| (−1)(√x2+1+√x+1) | −2 |