| |x+2| | 2 | 3 | |||
− | =− | ||||
| x2+x−2 | |x+1| | 4 |
| x2−6x+5 | 2x2+3x+1 | ||
+ | =11 | ||
| |x−1| | |x+1| |
| −(x + 2) | 2 | 3 | |||
− | = − | ||||
| x2 + x − 2 | −x − 1 | 4 |
| −(x + 2) | 2 | 3 | |||
+ | = − | ||||
| (x + 2)(x − 1) | x + 1 | 4 |
| −1 | 2 | 3 | |||
+ | = − | ||||
| x − 1 | x + 1 | 4 |
| −(x + 1) + 2(x − 1) | 3 | ||
= − | |||
| (x − 1)(x + 1) | 4 |
| x − 3 | 3 | ||
= − | |||
| x2 − 1 | 4 |
| 10 | 5 | |||
x1 = | = | |||
| 6 | 3 |
| 5 | ||
więc tylko −3 jest rozwiązaniem tego przypadku ponieważ | ∉(−∞, −2) | |
| 3 |
| x + 2 | 2 | 3 | |||
− | = − | ||||
| x2 + x − 2 | −x − 1 | 4 |
| x + 2 | 2 | 3 | |||
− | = − | ||||
| x2 + x − 2 | x + 1 | 4 |