d = a√2
D = √a2 + d2 = a√3
| a | √3 | ||
= sin α = | |||
| D | 3 |
| x | |||||||
= sin α | |||||||
|
| d | √6 | |||
x = | sinα = a | |||
| 2 | 6 |
Kiedyś robiłem to zadanie tym sposobem ale było źle może ktoś wskaże błąd jeśli jest
| 1 | ||
a2+( | a)2=|AK|2 | |
| 2 |
| √5 | ||
|AK|= | a | |
| 2 |
| 1 | ||
IKLI= | a | |
| 2 |
| 5 | 1 | 6 | ||||
|AL|2= | a2+ | a2= | a2 | |||
| 4 | 4 | 4 |
| 6 | 1 | ||
a2−z2+ (a√3−z)2= | a2 | ||
| 4 | 2 |
| 3 | 1 | ||
a2−z2+3a2−2√3az+z2= | a2 | ||
| 2 | 2 |
| 2√3a | ||
z tego z= | i podstawiamy do | |
| 3 |
| 4 | 3 | ||
a2+|FL|2= | a2 | ||
| 3 | 2 |
| 1 | ||
|FL|2= | a2 | |
| 6 |
| √6 | ||
|FL|= | a | |
| 6 |