Oblicz zbieżność całki
Malwa:
Czy ktoś mógł by rozwiązać mi to zadanie

Bardzo proszę
28 sty 16:27
Malwa: Bardzo proszę o pomoc
28 sty 18:23
Krzysiek: | sin2 x | | 1 | | 1 | |
| ≤ |
| ≤ |
| |
| x+x√x | | x+√x | | x√x | |
28 sty 18:39
Malwa: Dziękuję bardzo za rozwiązanie
28 sty 19:21
Ralfik: A co się stało z dx bo nie mogę tego zrozumieć
28 sty 19:29
Krzysiek: nic się nie stało, ograniczałem tylko funkcję podcałkową
28 sty 19:47
Malwa: Czyli to nie jest jeszcze koniec zadania
29 sty 14:56
Krzysiek: no nie...
| | 1 | |
teraz trzeba zbadać zbieżność takiej całki: ∫1∞ |
| dx |
| | x√x | |
29 sty 15:04
Malwa: A mógł byś ją rozwiązać
29 sty 15:11
Krzysiek: jest to podstawowa całka skorzystaj z podstawowego wzoru:
∫xa dx=...
29 sty 15:15
29 sty 15:25
Malwa: Była bym ci wdzięczna jak byś rozwiązał mi ją do końca a następne z moich zdań już spróbuje
sama opierając się na tym
29 sty 15:46
Malwa: czy może ktoś pomóc mi to dokończyć

?
29 sty 18:29
29 sty 19:01
29 sty 20:02