| u(x) − u(x0) | f(x)*g(x) − f(x0)*g(x0) | |||
limx−>x0 | = limx−>x0 | = | ||
| x−x0 | x−x0 |
| f(x)*g(x) − f(x0)*g(x0) | ||
limx−>x0 | = | |
| x−x0 |
| (Δf + f(x0)*)(Δg + g(x0)) − f(x0)*g(x0) | ||
limx−>x0 | = | |
| x−x0 |
| Δf*Δg + Δf*g(x0) + f(x0)*Δg + f(x0)*g(x0) − f(x0)*g(x0) | ||
limx−>x0 | = | |
| x−x0 |
| Δf*Δg + Δf*g(x0) + f(x0)*Δg | ||
limx−>x0 | = | |
| x−x0 |
| Δf*Δg + Δf*g(x0) + f(x0)*Δg | ||
limΔx→0 | = | |
| Δx |
| Δf*Δg | Δf*g(x0) | f(x0)*Δg | ||||
limΔx→0 | + | + | ||||
| Δx | Δx | Δx |
| Δf | |
= f'(x) (z definicji) | |
| Δx |
| Δg | |
= g'(x) | |
| Δx |
| Δf | Δf | Δg | ||||
limΔx→0 Δg* | + g(x0)* | + f(x0)* | ||||
| Δx | Δx | Δx |
| z(x+Δx)−z(x) | ||
z'(x) = limΔx→0 | ||
| Δx |
| u(x+Δx)v(x+Δx) − u(x)v(x) | ||
= limΔx→0 | ||
| Δx |
| (u(x+Δx) − u(x))v(x+Δx) + u(x)(v(x+Δx) − v(x)) | ||
= limΔx→0 | ||
| Δx |
| u(x+Δx) − u(x) | v(x+Δx) − v(x) | |||
= limΔx→0 ( | v(x+Δx) + u(x) | ) | ||
| Δx | Δx |
| Δf | Δf | |||
f'(x) = limΔx→0 | , a nie samo | |||
| Δx | Δx |
dzieki wielkie