| cos√x | ||
∫ | , t=√x, | |
| √x |
| √x | t | ||
= | |||
| dx | dt |
| 1 | 1 | ||
dx= | |||
| 2√x | dt |
| dt | ||
dx= | ||
| 2t |
| cost | 1 | 1 | ||||
∫ | dt= | ∫cost* | dt | |||
| 2t2 | 2 | t2 |
| −cost | 1 | 1 | |||
− | ∫sint* | dt | |||
| 2t | 2 | t |
| 1 | ||
f(x)= sint g`(x)= | ||
| t |
| −cost | sint*ln|t| | 1 | |||
− | − | ∫cost*ln|t| | |||
| 2t | 2 | 2 |
| 1 | 1 | cos√x | |||
[sin√x]'= (cos√x).(√x)' = cos√x. | = | ||||
| 2√x | 2 | √x |
| cos√x | ||
=2[sin√x]', | ||
| √x |