cos√x | ||
∫ | , t=√x, | |
√x |
√x | t | ||
= | |||
dx | dt |
1 | 1 | ||
dx= | |||
2√x | dt |
dt | ||
dx= | ||
2t |
cost | 1 | 1 | ||||
∫ | dt= | ∫cost* | dt | |||
2t2 | 2 | t2 |
−cost | 1 | 1 | |||
− | ∫sint* | dt | |||
2t | 2 | t |
1 | ||
f(x)= sint g`(x)= | ||
t |
−cost | sint*ln|t| | 1 | |||
− | − | ∫cost*ln|t| | |||
2t | 2 | 2 |
1 | 1 | cos√x | |||
[sin√x]'= (cos√x).(√x)' = cos√x. | = | ||||
2√x | 2 | √x |
cos√x | ||
=2[sin√x]', | ||
√x |