| dx | ||
∫ | , x=(t−2)2, t≥2 | |
| 2+√x |
| (t−2)2 | t | ||
= | |||
| dx | dt |
| 2(t−2) | 1 | ||
= | |||
| dx | dt |
| 2(t−2)dt | t−2 | |||
∫ | = 2∫ | dt= | ||
| 2+√(t−2)2 | t |
| t | 2 | t0 | ||||
2∫ | dt−∫ | dt=2t−2∫t−1dt=2t−2 | =2t | |||
| t | t | 0 |
| dx | ||
∫ | = 2√x+4+C | |
| 2+√x |
| t−2 | 2 | |||
2∫ | dt = 2∫dt − 2∫ | dt | ||
| t | t |
| 1 | ||
po drugie ∫ | dx ≠ t0 = 0 | |
| x |
| 2t | t+2−2 | dt | ||||
∫ | dt=2∫ | dt=2∫dt−4∫ | ||||
| 2+t | t+2 | t+2 |
| dx | ||
∫ | = | 2+√x=t ⇒ p{x{=t−2 i t >2 ⇒ x=(t−2)2 ⇒ dx=2(t−2)dt | = | |
| 2+√x |
| t−2 | dt | |||
= 2 ∫ | dt= 2( ∫dt − ∫ | )= 2 t−lnt)= 2(2+√x−ln(2+√x))+C= | ||
| t | t |
| dx | 1 | dx | ||||
∫ | =2∫dt−2∫ | dt=2t−4ln|t|, t=√x+2 ⇒ ∫ | = 2(√x+2)−4ln|√x+2|+C | |||
| 2+√x | t | 2+√x |