| −1 | x2 | |||
f`(x)= | g(x)= | |||
| 1+x2 | 2 |
| x2 | x2 | −1 | ||||
∫xarcctgx dx=arcctgx* | +∫ | * | dx | |||
| 2 | 2 | 1+x2 |
| x2arcctgx | x2 | x2arcctgx | 1 | x2 | ||||||
∫xarcctgx dx = | +∫ | dx = | + | ∫ | dx = | |||||
| 2 | 2(x2+1 | 2 | 2 | x2+1 |
| x2arcctgx | 1 | x2+1−1 | x2arcctgx | 1 | −1 | ||||||
+ | ∫ | dx = | + | ∫1+ | dx = | ||||||
| 2 | 2 | x2+1 | 2 | 2 | x2+1 |
| x2arcctgx | 1 | −1 | x2arcctgx | x | arcctgx | ||||||
+ | (∫1dx+∫ | ) = | + | + | +C | ||||||
| 2 | 2 | x2+1 | 2 | 2 | 2 |
| 1 | x2 | 1 | x2+1−1 | 1 | −1 | ||||||
∫ | dx= | ∫ | dx= | (∫1dx+∫ | dx)= | ||||||
| 2 | x2+1 | 2 | x2+1 | 2 | x2+1 |
| 1 | 1 | |||
= | x+ | arcctgx | ||
| 2 | 2 |
| 1 | 1 | 1 | ||||
∫xarcctgxdx= | x2arcctgx + | x+ | arcctgx | |||
| 2 | 2 | 2 |