sin a + sin b
Tomek: jak dojść z sinα+sinβ do 2*sin((α+β)/2)*cos((α−β)/2)
25 sty 20:21
Eta:
oznacz : a+b= α i a−b=β
to: sin(a+b)= sina *cosb+cosa*sinb i sin (a−b)= sina*cosb−cosb*sina
(**) sin(a+b)+ sin(a−b)= 2sina*cosb
a+b=α a+b=α
a−b=β −a+b = −β
−−−−−−−− −−−−−−−−−−
| | α+β | | α−β | |
2a= α+β ⇒ a= |
| 2b= α−β ⇒ b= |
| |
| | 2 | | 2 | |
| | α+β | | α−β | |
(**) sinα+snβ= 2sin |
| *cos |
| |
| | 2 | | 2 | |
i bingo
25 sty 20:35