f. tryg
Oliwia: Rozwiąż równanie
cos(2x +54pi) = cos(2x− 34pi)=1
24 sty 16:39
m: coooo
24 sty 16:41
Oliwia: wiecie jak to zacząc ?
24 sty 16:43
Oliwia: z tego na razie nic mi nie wychodzi, byc moze w pierwszym nawiasie tez jest 3/4
24 sty 16:44
Oliwia: zamiast pierwszego = to jest +
24 sty 16:46
Oliwia: mam pomysła
24 sty 16:48
Oliwia: istnieje wzory
cos(a + B) = cosa cosb − sina sinb
cos(a − B) = cosa cosb + sina sinb
L=cos(2x+ 3/4pi)+ cos(2x − 3/4pi)
L=cos(2x)cos(3/4pi) − sin(2x)sin(3/4pi)+cos(2x)cos(3/4pi)+sin(2x)sin(3/4pi)
2cos(2x)cos(3/4pi)=1
24 sty 16:53
pigor: | | α+β | | α−β | |
skorzystaj ze wzoru cosα+cosβ= 2cos |
| cos |
| i zobaczysz co dalej  |
| | 2 | | 2 | |
24 sty 16:53
Bogdan:
Czy treść zadania jest taka (wersja A):
| | 5 | | 3 | |
cos(2x + |
| π) = 1 i cos(2x − |
| π) = 1 |
| | 4 | | 4 | |
czy taka (wersja B):
| | 5 | | 3 | |
cos(2x + |
| π) + cos(2x − |
| π) = 1 |
| | 4 | | 4 | |
24 sty 16:56
Oliwia: druga wersja
24 sty 16:59
Oliwia: pigor: tego wzoru nie ma w tablicach wiec ta droga odpada
24 sty 17:00
Bogdan:
to skorzystaj z podpowiedzi pigora
24 sty 17:01
Bogdan:
możesz przecież korzystać z czego chcesz, również z zależności, których nie ma w tablicach
maturalnych
24 sty 17:03
Oliwia: ale takie zadania obowiązują na sprawdzianie i mamy do dyspozycji jedynie wzory z tablic
24 sty 17:06
Oliwia: 2cos(2x)cos(3/4pi)=1
cos(2x)cos(3/4pi)=1/2
√22cos(2x)=1/2
cos(2x)=√22
a tu już nie ma problemu
24 sty 17:09
Oliwia: tylko że z minusem
24 sty 17:10
Bogdan:
Czy Twój nauczyciel wyraźnie zakazał stosowania wiedzy spoza tablic? Myślę, że nikt
nie może zabraniać z wiedzy, którą się posiada i z pewnością nie może wprowadzać
pod względem jakichkolwiek ograniczeń.
Na maturze możesz stosować również matematykę wyższą, jeśli ją w jakimś zakresie znasz.
24 sty 17:11
Oliwia: No dobrze rozumiem

tylko ona to rozwiązała za pomocą owych wzorów i nie trzeba mieć
ponadprogramowej wiedzy
24 sty 17:14
Oliwia: i jak z tym zadaniem?
24 sty 17:21
Bogdan:
Znajomość zależności podanej przez pigora to nie jest ponadprogramowa wiedza, ten wzór
jest w podręczniku szkolnym i tyle w tej sprawie z mojej strony.
24 sty 17:24
Oliwia: Nie przyszłam się tu kłócić o mojego "tępego" nauczyciela, tylko chciałam się czegoś nauczyć

Pokój!
24 sty 17:31