| √3(x+y+z) | ||
Wykaż, że | > √x2+y2+z2, gdy x,y,z są długościami booków dowolnego | |
| 2 |
| √3(x+y+z) | |
>√x2+y2+z2 | |
| 2 |
| 2√x2+y2+z2 * √3 | ||
x+y+z> | ||
| 3 |
| 2√3x2+3y2+3z2 | ||
x+y+z> | ||
| 3 |
3x+3y+3z>2√3x2+3y2+3z2 /()2
9(x+y+z)2>4(3(x2+y2+z2))
| 3 | |
(x+y+z)2>x2+y2+z2 | |
| 4 |
| 3 | |
(x2+y2+z2+2xy+2xz+2yz)>x2+y2+z2 | |
| 4 |