| −1 | ||
arccos( | ) | |
| 2 |
| −1 | ||
cos | = II lub III ćwiartka, czyli: | |
| 2 |
| π | ||
x = | ||
| 3 |
| 2π | 4π | |||
x = | lub x = | |||
| 3 | 3 |
| 1 | |
= cosx | |
| 2 |
| π | ||
x = | ||
| 3 |
| 1 | π | 5π | ||||
arccos(− | ) = π − | = | ![]() | |||
| 2 | 6 | 6 |
y=arccosx, x∊<−1;1>
y∊<0;π>
arccos(−x)=π−arccosx
| −1 | 1 | π | 2 | |||||
arccos( | )=π−arccos( | )=π− | = | π | ||||
| 2 | 2 | 3 | 3 |
| x+1 | ||
arccos( | ) ![]() | |
| x−2 |
| x+1 | ||
−1≤ | ≤ 1 | |
| x−2 |
| x+1 | ||
−1≤ | ||
| x−2 |
| x+1 | |
≥ −1 | |
| x−2 |
| x+1 | |
+ 1 ≥ 0 | |
| x−2 |
| x+1 + x − 2 | |
≥ 0 | |
| x−2 |
| 2x−1 | |
≥ 0 | |
| x−2 |
| 1 | ||
(x− | )(x−2) ≥ 0 | |
| 2 |
| 1 | ||
x∊ ( −∞; | >u<2;∞) | |
| 2 |
| x+1 | |
≤ 1 | |
| x−2 |
| x+1 | |
− 1 ≤ 0 | |
| x−2 |
| x+1 | x−2 | ||
− | ≤ 0 | ||
| x−2 | x−2 |
| x+1 − x+2) | |
≤ 0 | |
| x−2 |
| 3 | |
≤ 0 | |
| x−2 |
| 1 | ||
x∊ ( −∞; | >u<2;∞)u(−∞;2> | |
| 2 |
| 1 | ||
x∊ (−∞; | >u {2} | |
| 2 |
| 1 | ||
i chyba zapomniałem dać x−2≠ 0 ⇒ x ∊ (−∞; | > | |
| 2 |
| x+3 | ||
arcctg( | ) > arcctg(−1) | |
| x |
| x+3 | |
< −1 | |
| x |
| x+3 | |
+ 1 < 0 | |
| x |
| x+3 + x | |
< 0 | |
| x |
| 2x + 3 | |
< 0 | |
| x |
| 3 | ||
x(x + | ) < 0 | |
| 2 |
| −3 | ||
x∊( | ;0) | |
| 2 |
http://www.wolframalpha.com/input/?i=arcctg%28+%28x%2B3%29%2Fx+%29+%3E+arcctg%28-1%29
| x+3 | |
< −1 | |
| x |
| x | |
> −1 | |
| x+3 |
| x + x + 3 | |
> 0 | |
| x+3 |
| 2x +3 | |
> 0 | |
| x+3 |